MATH 8

HOMEWORK 7 PARTIAL SOLUTIONS

1. Find the prime factorization of 111111.

Solution: $111111=3 \cdot 7 \cdot 11 \cdot 13 \cdot 37$
2. (a) Which positive integers have exactly three positive divisors? Solution: $n=p^{2}$, where p is prime.
(b) Which positive integers have exactly four positive divisors?

Solution: $n=p_{1} p_{2}$, where p_{1} and p_{2} are distinct primes, and $n=q^{3}$, where q is prime.
(c) Suppose $n \geq 2$ is an integer with the property that whenever a prime p divides n, p^{2} also divides n (i.e. all primes in the prime factorization of n appear at least to the power 2). Prove that n can be written as the product of a square and a cube.

Proof. Let $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{m}^{a_{m}}$ be the prime factorization of n, where each p_{i} is a distinct prime and $a_{i} \geq 2$ for all i. It suffices to prove that we can find a factorization of n in which the exponent of each factor is either a multiple of 2 or a multiple of 3 . So, if every exponent a_{i} is already either a multiple of 2 or a multiple of 3 , then we are happy and done! Therefore, we suppose there is some exponent a_{k} that is neither a multiple of 2 nor a multiple of 3 (5 is an example of such a positive integer). Note that a_{k} is an odd integer greater than 3. Hence $a_{k}-3$ is even. Thus, if there is any prime power $p_{k}^{a_{k}}$ in the factorization above, where a_{k} is neither a multiple of 2 nor 3 , we write $p_{k}^{a_{k}}=p_{k}^{a_{k}-3} p_{k}^{3}$. Therefore, the prime factorization of n can be written in such a way that each exponent is either a multiple of 2 or a multiple of 3 (and note that now this factorization may not have each prime distinct).
4. Prove that $\operatorname{lcm}(a, b)=\frac{a b}{\operatorname{gcd}(a, b)}$ for any positive integers a, b without using prime factorization.

Proof. This is a sketch of the proof. You are left to fill in the details.
Let's start with basic notation. Let $m=l c m(a, b)$ and $d=\operatorname{gcd}(a, b)$. We want to show that $a b=d m$.
(a) First show that since d divides a and d divides b, then d must also divide the product $a b$.
(b) Once you've shown the above, this means (by definition) that we can write $a b=d n$ for some integer n. Now the goal of the problem is to show that n must actually be equal to m.
(c) Next, show that n is a common multiple of a and b. That is, show a divides n and b divides n.
(d) Finally, show that n divides m.
(e) Note that the previous two steps yield $n=m$. From item (c), we an conclude that $m \leq n$ (since m is the LEAST common multiple of a and b it must be less than or equal to every common multiple of a and b). From item (d) we can conclude that $n \leq m$. Thus, these two inequalities yield $n=m$.
6. On your own or discuss in section.
8. Find all solutions $x, y \in \mathbb{Z}$ to the following Diophantine equations:
(a) $x^{2}=y^{3}$

Solution: Any integer that is both a square and a cube is a 6 th power, and conversely, every integer that is a $6 t h$ power is both a square and a cube. So the solutions are $x=a^{3}$ and $y=a^{2}$ for every integer a.
(b) $x^{2}-x=y^{3}$

Solution: Factor the left hand side as $x(x-1)$. The two integers x and $x-1$ are coprime, and their product is a cube. Thus, by Proposition 12.4, both x and $x-1$ are cubes, and in particular, their difference is 1 . The only integers x that make this true are $x=0,1$. Hence the solutions are $x=0, y=0$ and $x=1, y=0$.
(c) $x^{2}=y^{4}-77$

Solution: $x=4, y=3$ is one solution. Are there any others?
(d) $x^{3}=4 y^{2}+4 y-3$

Solution: Factor the right hand side to obtain $x^{3}=(2 y-1)(2 y+3)$ now mimic Example 12.1.

